Doubly Stochastic Normalization for Spectral Clustering
نویسندگان
چکیده
In this paper we focus on the issue of normalization of the affinity matrix in spectral clustering. We show that the difference between N-cuts and Ratio-cuts is in the error measure being used (relative-entropy versus L1 norm) in finding the closest doubly-stochastic matrix to the input affinity matrix. We then develop a scheme for finding the optimal, under Frobenius norm, doubly-stochastic approximation using Von-Neumann’s successive projections lemma. The new normalization scheme is simple and efficient and provides superior clustering performance over many of the standardized tests.
منابع مشابه
Spectral gap of doubly stochastic matrices generated from CUE
To a unitary matrix U we associate a doubly stochastic matrix M by taking the modulus squared of each element of U. To study the connection between onset of quantum chaos on graphs and ergodicity of the underlying Markov chain, specified by M, we study the limiting distribution of the spectral gap of M when U is taken from the Circular Unitary Ensemble and the dimension N of U is taken to infin...
متن کاملSpectral gap of doubly stochastic matrices generated from equidistributed unitary matrices
To a unitary matrix U we associate a doubly stochastic matrix M by taking the squared modulus of each element of U . To study the connection between onset of quantum chaos on graphs and ergodicity of the underlying Markov chain, specified by M , we study the limiting distribution of the spectral gap of M when U is taken from the circular unitary ensemble and the dimension N of U is taken to inf...
متن کاملSome results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملHidden Markov model approach to spectral analysis for hyperspectral imagery
Chein-I Chang, MEMBER SPIE University of Maryland Baltimore County Department of Computer Science and Electrical Engineering Remote Sensing Signal and Image Processing Laboratory 1000 Hilltop Circle Baltimore, MD 21250 Abstract. The hidden Markov model (HMM) has been widely used in speech recognition where it models a speech signal as a doubly stochastic process with a hidden state process that...
متن کاملMinimization of Norms and the Spectral Radius of a Sum of Nonnegative Matrices Under Diagonal Equivalence
We generalize in various directions a result of Friedland and Karlin on a lower bound for the spectral radius of a matrix that is positively diagonally equivalent to a • The research of these authors was supported by their joint grant No. 90-00434 from the United States-Israel Binational Science Foundation, Jerusalem, Israel. t The research of this author was supported in part by NSF Grant DMS-...
متن کامل